当前位置:首页  教师信息

何国良

来源:信息与安全工程学院作者:李必成发布日期:2023-04-07访问次数:3080

何国良,男,教授,博士生导师,主要研究方向为人工智能、数据挖掘、机器学习、智能信息处理和智能算法

联系方式:glhe@whu.edu.cn

 

个人简介:工业和信息化部软件与集成电路促进中心云计算研究中心专家,计算机学会人工智能与模式识别执行委员和大数据专家委员,人工智能学会机器学习专委会委员,教育部奖励计划通讯评审专家,计算机学会高级会员。20102月至20112月在加拿大Simon Fraser大学从事博士后研究,主持和参与国家重大专项、国家重大科学仪器设备开发专项项目、863计划、国家自然科学基金、中央高校基本科研业务费专项资金、湖北省自然科学基金和其它研究开发型项目等多项科研项目;获国家科技进步奖二等奖和湖北省科技成果推广奖二等奖。已在国际著名学术期刊和学术会议上(如IEEE Transactions on Neural Networks and Learning Systems IEEE Transactions on Cybernetics IEE Transaction on Systems, Man, and CyberneticsInformation SciencesKnowledge-Based systems, Neurocomputingsoft computing和 计算机学报等)发表论文六十余篇(SCIEI 检索)。多个著名国际会议程序委员会成员,先后担任TKDETSMCTCYBInformation sciencesJournal of Computer science and Technology、计算机学报和IJCAI,AAAI等国际期刊和会议的审稿人。

 

近期承担科研项目

·         国家自然科学基金面上项目:基于智能终端和上下文感知的跨用户行为识别及其应用, 2023.01-2026.12主持。

·         国家自然科学基金面上项目:基于众包标注的多元时间序列流早期预警及其应用, 2019.01-2022.12主持。

·         科技部“新一代人工智能(2030)”重大专项:群体协作的组织设计与调控,2019.11-2022.12子课题负责人。

·         国家重大科学仪器设备开发专项项目:顺序式波长色散X荧光光谱仪的研发及产业化,2011.10-2017.09子课题负责人

·         湖北省自然科学基金面上项目:基于多元时序关联规则的早期预警模型及其应用研究,2022.6-2024.6主持

·         湖北省自然科学基金面上项目:基于目标识别的自适应演化模型若干关键技术研究,2012.1-2014.12主持

·         中央高新基本科研业务费专项资金项目:软硬件协同的自适应技术及应用,2011.1-2012.12主持

·         教育部产学协同育人项目:人工智能智慧课堂和教学模式的研究与实践,2020-2021主持

·         上海奔驰汽车有限公司:车辆远程诊断系统研发,2016.05-2017.06主持

·         湖北省评测中心:武汉市地方税务局技术测试项目测试协作,2011.03-2013.06主持

·         国家自然科学基金项目:基于内聚约束有大型数据集成探索式挖掘方法研究,2019.1~2022.12,排名第二。

·         国家自然科学基金项目:自然计算的数理模型及其算法研究,2017.1~2020.12,排名第二。

近期已发表论文

1.       Guoliang He, Wenjun Jiang, Rong Peng, Min Han, Ming Yin. Soft Subspace Based Ensemble Clustering for Multivariate Time Series Data, IEEE Transactions on Neural Networks and Learning Systems, 2022, DOI:10.1109/TNNLS.2022.3146136. (中科院SCI一区TOP, IF: 14.255)

2.       Guoliang He, Xin Xin, Rong Peng, Min Han, Juan Wang, Xiaoqun Wu, Online Rule-Based Classifier Learning on Dynamic Unlabeled Multivariate Time Series Data, IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2022, 52,2: 1121-1134. (中科院SCI一区TOP, IF: 11.471)

3.       Guoliang He, Bing Li, Han Wang, Wenjun Jiang, Cost-effective Active Semi-supervised Learning on Multivariate Time Series Data with Crowds, IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2022, 52,3:1437-1450. (中科院SCI一区TOP, IF: 11.471)

4.       Guoliang He, Han Wang, Shenxiang Liu, Bo Zhang. CSMVC: A Multi-View Method for Multivariate Time Series Clustering, IEEE Transactions on Cybernetics, 2021, DOI:10.1109/TCYB.2021.3083592. (中科院SCI一区TOP,IF: 19.118)

5.       Guoliang He, Y. Pan, X. Xia, J. He, R. Peng, and N. N. Xiong, A Fast Semi-Supervised Clustering Framework for Large-Scale Time Series Data, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51,7:4201-4216. (中科院SCI一区TOP, IF: 11.471)

6.       Yi ZhengXiaoqun Wu(*)Guoliang He(*), Wei Wang. Topology identification of fractional-order complex dynamical networks based on auxiliary-system approach, ChaosAn Interdisciplinary Journal of Nonlinear Science, 2021, doi: 10.1063/5.0032932. (中科院SCI一区, IF: 3.642)

7.       Jiangtao Gong, Di Ning, Xiaoqun Wu(*), Guoliang He(*), Bounded Leader-Following Consensus of Heterogeneous Directed Delayed Multi-Agent Systems via Asynchronous Impulsive Control, IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, DOI 10.1109/TCSII.2021.3054374. (SCI二区, IF: 3.691)

8.       Xuewen Xia, Ling Gui, Guoliang He(*), Bo Wei, Yinglong Zhang, Fei Yu, Hongrun Wu, Zhi-Hui Zhan. An expanded particle swarm optimization based on multi-exemplar and forgetting ability. Information Sciences, 2020, 508: 105-120. (中科院SCI一区TOP, IF:8.233 )

9.       He Guoliang; Li Yifei; Zhao Wen. An uncertainty and density based active semi-supervised learning scheme for positive unlabeled multivariate time series classification, KNOWLEDGE-BASED SYSTEMS,2017, 124:80-92. (中科院SCI一区TOP, IF: 8.139)

10.    He Guoliang, Chen Lu, Zeng Chen, Zheng Qiaoxian, Zhou Guofu. Probabilistic skyline queries on uncertain time series, NEUROCOMPUTING, 2016, 191:224-237. (SCI一区, IF: 5.779)

11.    He Guoliang, Duan Yong, Peng Rong, Jing Xiaoyuan, Qian Tieyun, Wang Lingling. Early classification on multivariate time series, NEUROCOMPUTING, 2015, 149:777-787. (SCI一区, IF: 5.779)

12.    Guoliang He, Wen Zhao, Xuewen Xia, Rong Peng, Xiaoying Wu. An ensemble of shapelet-based classifiers on inter-class and intra-class imbalanced multivariate time series at the early stage, Soft Computing, 2019, 23:6097-6114. (SCI二区, IF: 3.732)

13.  何国良,李元香,史忠植. 基于精英池演化算法的数字电路在片演化方法,计算机学报2010,33(2):365-372. (CCF A中文期刊, EI)

14.    Guoliang He, Wen Zhao, Xuewen Xia. Confidence based Early Classification of Multivariate Time Series with Multiple Interpretable Rules, PATTERN ANALYSIS AND APPLICATIONS, 2020,23,567-580. (SCI三区, IF: 2.307)

15.    He Guoliang, Yang Laurence, T. Kim, Tai-hoon Hsu, Ching Hsien, Li Yuanxiang, Hu Ting. Evolvable hardware design based on a novel simulated annealing in an embedded system, CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2012,24(4):354-370. (SCI三区, IF: 1.45)

16.    Guoliang He, Yong Duan, Tieyun Qian, Xu Chen. Early Prediction on Imbalanced Multivariate Time Series, The 22st ACM International Conference on Information and Knowledge Management, 2013. (CCF B, EI)

17.    He Guoliang, Chen Lu, Li Zhijie, Zheng Qiaoxian, Li Yuanxiang. Computing Skyline Probabilities on Uncertain Time Series, the 22nd International Conference on Neural Information Processing, 2015. (CCF C, EI)

18.    He Guoliang, Duan Yong, Li Yifei, Qian Tieyun, He Jinrong, Jia Xiangyang. Active Learning for Multivariate Time Series Classification with Positive Unlabeled Data, IEEE 27th International Conference on Tools with Artificial Intelligence,2016. (CCF C, EI)

19.    Yi fei Li, He Guoliang(*), Xia Xuewen, Li Yuanxiang. A Reverse Nearest Neighbor Based Active Semi-supervised Learning Method for Multivariate Time Series Classification, 27th International Conference on Database and Expert Systems Applications ,2016. (CCF C, EI)

20.    Guoliang He, Yong Duan, Guofu Zhou, and Lingling Wang, Early Classification on Multivariate Time Series with Core Features, 25th International Conference on Database and Expert Systems Applications, 2014. (CCF C, EI)

 

近期获批的国家发明专利

1.     何国良,段勇. 基于核特征早期预测多变量时间序列类别的分类方法2015, ZL201210507502.4

2.     何国良,段勇,李元香,周国富. 一种早期分类不平衡多变量时间序列数据的方法, 2018, ZL201510229367.5

3.     何国良; 王晗; 黄成瑞; 陈仪榕. 一种基于信息度和代表度的主动学习抽样方法, 2020-9-18, 中国, 202011296097.7 (实质审查)

4.     何国良; 王晗; 刘申享. 基于约束非负矩阵分解的多视图聚类方法, 2020-11-10, 中国, 202011278395.3 (实质审查)

5.     何国良; 蒋文君. 一种基于变量加权的软子空间聚类方法, 2020-11-1, 中国, 202011337158.X(实质审查)

6.     何国良,辛欣. 一种基于在线学习的多元时序数据规则挖掘方法,2020-11-18, 202011292898.6 (实质审查)